

Detector Support Group <u>We choose to do these things "not because they are easy, but because they are hard".</u> Weekly Report, 2021-03-10

Summary

<u>Hall A – GEM</u>

Peter Bonneau, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, Marc McMullen

- Installed mezzanine extension board on the BigBite gas distribution Raspberry Pi
- Added input and output regulator pressure transducers to WEDM readout display

		BB GEM Flow Readout				Software Heartbeat 🔵		
Regulator Input Pressure		Regulator Output Pressure						
9 psi		8 psi						
Std Flow Ch01	Std Flow Ch02	Std Flow Ch03	Std Flow Ch04	Hi Flow Ch05	Hi Flow Ch06	Hi Flow Ch07	Hi Flow Ch08	
207 sccm	200 sccm	203 sccm	228 sccm	0 sccm	0 sccm	0 sccm	-0 sccm	
Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	
						03/08/20	21 10:35:22	

BigBite GEM flow readout display with pressure transducer readings

• Cut, terminated, tested, and labeled 48 BNC-to-LEMO cables; 240 of 272 complete

<u>Hall A – SoLID</u>

Mary Ann Antonioli, Pablo Campero, Mindy Leffel, Marc McMullen

- Wrote PLC code for Radial Support Upstream interlock
 - * Added Add-On instruction to compare readout with set limits entered by user
 - * Added code to set Boolean interlock signal to one when readout is out of limits
 - ★ Added overall radial support upstream indicator to show interlock if any of the eight radial supports is out of limits
- Wrote PLC code to generate interlock based on the helium inlet and outlet temperatures
 - ★ If temperature sensors' readback is out of limits, an interlock is generated and the magnet is ramped down
- Modified *Solenoid Radial and Axial Support Expert* HMI screen to enable entering second thresholds for each radial support
- Populated all eight constant current source boards

<u>Hall B – RICH II</u>

Peter Bonneau, Tyler Lemon

- Refined ANSYS model for SHT35 sensor PCB
 - ★ Replaced heat flow through faces of buffer driver with internally generated heat
 - * Added convection to stagnant air for PCB substrate and buffer drivers
 - ★ Reduced size of PCB substrate to match design

- ★ Refinements produced a small change in the distance from the drivers to the location where SHT35 sensors should be placed; from ~0.22" to ~0.21"
- Completed initial routing for SHT35 temperature and humidity sensor board layout
- Reviewed <u>FPGA command engine</u> routines and interface to the real-time scan engine
- Investigated methods of implementing the sensor cyclic redundancy check (CRC) into the real-time scan engine
- Completed first version of RICH Hardware Interlock System diagram and sbRIO hardware diagram

<u>Hall B – SVT</u>

<u>Peter Bonneau</u>

• Tested, successfully, hybrid flex circuit board temperature signal inputs to verify appropriate system interlocking operation after the installation of the cable quick-disconnect system

Hall C – CAEN Testing

Mary Ann Antonioli, Aaron Brown, George Jacobs

- Completed voltage and current stability testing of CAEN 24-channel A1535 and A7435 modules; all testing complete
- Wrote Python code to generate plots for 24-channel A1535 and A7435 modules' voltage and current stability testing analysis

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, George Jacobs, Mindy Leffel, Tyler Lemon

- Reviewed remote AC power control module hardware requirements for interlocking crystal and electronic zone chillers
 - The chiller AC power interlock is controlled by a +24 V control voltage from the NI cRIO-9045 controller in the SHMS hut
 - ★ When the chiller interlock trips, the 24 V control voltage is removed, disabling the chiller
 - ★ The Bi-Ra AC power units used in the other DSG hardware interlock systems are no longer available
 - The Lowell Manufacturing model RPC-20-SCD remote power control module meets the requirements for this application and can be used as a replacement for the other DSG hardware interlock systems
- Developing CSS-BOY screen to turn on/off channels for all CAEN modules
 - ★ Wrote Python script to turn on/off all channels of all modules in both crates
 - ★ Wrote Javascript to turn on/off all channels of each module
- Completed Hardware Interlock System block diagram

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2021-03-10

EPICS Ethernet/EPICS PC cRIO RS232 24 24 ŕ ŕ oor safety switch RS232 RS232-AC unit AC unit CAEN SY4527 CAEN SY4527 PC Chiller 1 Chiller 2 140' HV 140' HV PC PC temperature and flow LCW PC LCW sensors LCW. multiplexer X6 Keysight Terminal block D-sub 50-pin x12 NPS detector X6 mainframe

NPS Hardware Interlock System M. A. Antonioli 02/26/21, rev. 3/8/21

<u>EIC</u>

<u>Brian Eng</u>

• Developing list of CY2021 goals, which need to be prioritized and milestoned